EN / 中文

NEWS CENTER

/
/
公司新闻
所属分类概要描述: Companynews
基于合理热处理工艺的压铸模具挡板耐磨性改善研究
基于合理热处理工艺的压铸模具挡板耐磨性改善研究
摘要|在压铸模具挡板供货态实验钢的基础上,对其进行1100 ℃保温2 h均匀化退火、880 ℃保温3 0min水淬及分别在20 0℃和250 ℃回火2 h,随后对其显微组织、宏观硬度、拉伸性能和耐磨性等进行了测定。结果表明,经过淬回火后实验钢由模具供货态的片状珠光体和网状铁素体组织转变为回火马氏体和少量残留奥氏体组织,且抗拉强度和硬度显著增加。淬火+200 ℃回火实验钢的耐磨性达到最佳,250 ℃回火次之,均优于模具供货态耐磨性。
铝合金压铸模具挡板在压铸机连续工作中承受着较大的压应力和摩擦力,在其服役过程中要求即使经过长时间工作仍然能保持良好的尺寸精度,确保不至于因为长时间工作造成表面凹凸不平,而影响压铸机的正常运转。磨损是造成材料失效的主要形式之一,通常机器是依靠其零件副之间的相对运动进行工作运转,长时间处于工作环境下,零部件会逐渐发生磨损,导致表面受到一定程度的损坏而失效,对机器正常工作运行造成影响。
查看详情
摘要|在压铸模具挡板供货态实验钢的基础上,对其进行1100 ℃保温2 h均匀化退火、880 ℃保温3 0min水淬及分别在20 0℃和250 ℃回火2 h,随后对其显微组织、宏观硬度、拉伸性能和耐磨性等进行了测定。结果表明,经过淬回火后实验钢由模具供货态的片状珠光体和网状铁素体组织转变为回火马氏体和少量残留奥氏体组织,且抗拉强度和硬度显著增加。淬火+200 ℃回火实验钢的耐磨性达到最佳,250 ℃回火次之,均优于模具供货态耐磨性。
铝合金压铸模具挡板在压铸机连续工作中承受着较大的压应力和摩擦力,在其服役过程中要求即使经过长时间工作仍然能保持良好的尺寸精度,确保不至于因为长时间工作造成表面凹凸不平,而影响压铸机的正常运转。磨损是造成材料失效的主要形式之一,通常机器是依靠其零件副之间的相对运动进行工作运转,长时间处于工作环境下,零部件会逐渐发生磨损,导致表面受到一定程度的损坏而失效,对机器正常工作运行造成影响。
压铸汽车横梁结构件热处理工艺开发
压铸汽车横梁结构件热处理工艺开发
介绍了使用AlSi10MnMg合金材料的试棒进行固溶和时效T7热处理,通过minitab实验设计和响应优化工具得出热处理工艺参数与铸件力学性能的影响关系模型以及最优热处理工艺参数,并通过高真空压铸汽车横梁结构件的本体切片验证确认最优参数组合的有效性。

随着新能源电动汽车技术发展,车身结构件趋向于大型化、薄壁化、高强度、高韧性。这些结构件多使用铝合金,使用高真空压铸成形,最后经过热处理得到轻量化和高强度于一体的结构件产品。减震塔、纵梁、横梁等车身结构件的压铸和热处理工艺有了大量的研究。研究表明,压铸件的力学性能与材料成分、内部气孔、热处理工艺之间有着复杂的关系,如在一定的温度条件下,适当提高固溶温度可以提高屈服强度,但却使产品表面气泡增多。不同组合的热处理工艺和压铸件本身取样都存在不稳定的问题。因此,需要把合金成分、内部品质尽量固定下来去研究不同热处理工艺参数对压铸件力学性能的影响关系,并明确具体的关系模型公式。

AlSi10MnMg铝合金拥有良好的铸造性能和力学性能,在薄壁、复杂的汽车结构零件上被广泛应用,本课题结合一款汽车横梁结构件热处理工艺开发,系统介绍使用同一压铸批次的标准试棒,在实际热处理设备和产品可控的固溶、时效温度和时间(生产效率)间,通过试验设计及优化,整理出最优的热处理工艺参数,为新产品热处理工艺方案开发提供参考
查看详情
介绍了使用AlSi10MnMg合金材料的试棒进行固溶和时效T7热处理,通过minitab实验设计和响应优化工具得出热处理工艺参数与铸件力学性能的影响关系模型以及最优热处理工艺参数,并通过高真空压铸汽车横梁结构件的本体切片验证确认最优参数组合的有效性。

随着新能源电动汽车技术发展,车身结构件趋向于大型化、薄壁化、高强度、高韧性。这些结构件多使用铝合金,使用高真空压铸成形,最后经过热处理得到轻量化和高强度于一体的结构件产品。减震塔、纵梁、横梁等车身结构件的压铸和热处理工艺有了大量的研究。研究表明,压铸件的力学性能与材料成分、内部气孔、热处理工艺之间有着复杂的关系,如在一定的温度条件下,适当提高固溶温度可以提高屈服强度,但却使产品表面气泡增多。不同组合的热处理工艺和压铸件本身取样都存在不稳定的问题。因此,需要把合金成分、内部品质尽量固定下来去研究不同热处理工艺参数对压铸件力学性能的影响关系,并明确具体的关系模型公式。

AlSi10MnMg铝合金拥有良好的铸造性能和力学性能,在薄壁、复杂的汽车结构零件上被广泛应用,本课题结合一款汽车横梁结构件热处理工艺开发,系统介绍使用同一压铸批次的标准试棒,在实际热处理设备和产品可控的固溶、时效温度和时间(生产效率)间,通过试验设计及优化,整理出最优的热处理工艺参数,为新产品热处理工艺方案开发提供参考
半固态铸造合金流变成形的数值模拟研究现状及展望
半固态铸造合金流变成形的数值模拟研究现状及展望
合金流变成形的数值模拟可有效预测半固态成形中充型和凝固过程,对压力场、速度场、固相分布、充填速度、充填温度、以及成形过程的缺陷等进行分析,对工艺、设计相关的方案优化提供相关的决策帮助。综述了近年来合金流变成形数值模拟技术的理论基础,以及国内外流变成形合金的研究进展和未来发展方向。
半固态浆料打破了传统的铸造成形模式,能形成球晶,能有效地减少内部缺陷,提高合金的力学性能,并具有较低的成形温度,模具受到的热冲击比较小,使模具的使用寿命得到延长。由于半固态流变成形具有能耗较少、成本较低、质量较优等特点,已逐渐成为半固态成形技术发展与技术推广的主要趋势。半固态流变成形的过程是一个涉及到多种物理场变化的复杂过程,如温度场、应力场、流场、速度场等。由于半固态流变成形技术综合了传统铸造、锻造等加工方法的诸多优点,已成功应用到交通运输、航空航天等领域轻量化设计生产,具有较好的应用前景。
查看详情
合金流变成形的数值模拟可有效预测半固态成形中充型和凝固过程,对压力场、速度场、固相分布、充填速度、充填温度、以及成形过程的缺陷等进行分析,对工艺、设计相关的方案优化提供相关的决策帮助。综述了近年来合金流变成形数值模拟技术的理论基础,以及国内外流变成形合金的研究进展和未来发展方向。
半固态浆料打破了传统的铸造成形模式,能形成球晶,能有效地减少内部缺陷,提高合金的力学性能,并具有较低的成形温度,模具受到的热冲击比较小,使模具的使用寿命得到延长。由于半固态流变成形具有能耗较少、成本较低、质量较优等特点,已逐渐成为半固态成形技术发展与技术推广的主要趋势。半固态流变成形的过程是一个涉及到多种物理场变化的复杂过程,如温度场、应力场、流场、速度场等。由于半固态流变成形技术综合了传统铸造、锻造等加工方法的诸多优点,已成功应用到交通运输、航空航天等领域轻量化设计生产,具有较好的应用前景。
新产品,铝压铸后再CNC加工,材质:ADC12
新产品,铝压铸后再CNC加工,材质:ADC12
新产品,铝压铸后再CNC加工,材质:ADC12
查看详情
新产品,铝压铸后再CNC加工,材质:ADC12
我们技术工程师团队研发的新产品毛坯,A35T6材质,铝重力铸造
我们技术工程师团队研发的新产品毛坯,A35T6材质,铝重力铸造
我们技术工程师团队研发的新产品毛坯,A35T6材质,铝重力铸造
查看详情
我们技术工程师团队研发的新产品毛坯,A35T6材质,铝重力铸造
铝合金挤压铸造汽车控制臂的开发
铝合金挤压铸造汽车控制臂的开发
以某量产车型的钢制下控制臂为研究对象,通过轻量化设计,开发了以铝合金铸件为核心的钢铝混合结构控制臂,通过挤压铸造工艺得到铝合金铸件,实现了减重25%的设定目标。设计和试验表明,铝合金铸件为核心的钢铝混合结构控制臂能够满足下控制臂的使用需求,并大幅度降低质量,满足整车轻量化的需求。
查看详情
以某量产车型的钢制下控制臂为研究对象,通过轻量化设计,开发了以铝合金铸件为核心的钢铝混合结构控制臂,通过挤压铸造工艺得到铝合金铸件,实现了减重25%的设定目标。设计和试验表明,铝合金铸件为核心的钢铝混合结构控制臂能够满足下控制臂的使用需求,并大幅度降低质量,满足整车轻量化的需求。
一体化压铸件毛边的等离子切割解决方案
一体化压铸件毛边的等离子切割解决方案
新能源汽车厂掀起了一体化压铸技术在汽车零部件上的革新应用,使得全球汽车品牌纷纷跟进,一体化压铸大势所趋,推动了大型集成化汽车结构件的普及推广。采用超大型压铸岛与一体化压铸工艺,生产新能源车汽车底盘件、电池壳、重型卡车零部件、通讯类部件等产品,化繁为简,不仅提高了生产效率,还降低生产成本。
查看详情
新能源汽车厂掀起了一体化压铸技术在汽车零部件上的革新应用,使得全球汽车品牌纷纷跟进,一体化压铸大势所趋,推动了大型集成化汽车结构件的普及推广。采用超大型压铸岛与一体化压铸工艺,生产新能源车汽车底盘件、电池壳、重型卡车零部件、通讯类部件等产品,化繁为简,不仅提高了生产效率,还降低生产成本。
铝合金挤压铸造技术在汽车结构件中的应用
铝合金挤压铸造技术在汽车结构件中的应用
给出了几种典型挤压铸造件在汽车制造业中的应用实例。通过对典型零件的研究,证明挤压铸造是提高铸件性能的最有效的工艺方法,可替代部分锻造生产那些性能要求高而用其他铸造方法性能无法达到的制件,在汽车制造业用铝合金替代部分铸铁、铸钢生产高质量铸件是可行的。

挤压铸造工艺使液态金属在高压下成形、凝固或伴有微量塑性变形,可消除铸件内部缩孔、疏松等缺陷,使铸件组织细密,可通过热处理大幅提高铸件力学性能,接近或相当于模锻件水平,具有良好的应用前景。
查看详情
给出了几种典型挤压铸造件在汽车制造业中的应用实例。通过对典型零件的研究,证明挤压铸造是提高铸件性能的最有效的工艺方法,可替代部分锻造生产那些性能要求高而用其他铸造方法性能无法达到的制件,在汽车制造业用铝合金替代部分铸铁、铸钢生产高质量铸件是可行的。

挤压铸造工艺使液态金属在高压下成形、凝固或伴有微量塑性变形,可消除铸件内部缩孔、疏松等缺陷,使铸件组织细密,可通过热处理大幅提高铸件力学性能,接近或相当于模锻件水平,具有良好的应用前景。
大型压铸机的机铰系统的优化设计
大型压铸机的机铰系统的优化设计
针对锁模力为25 000 kN压铸机扩力倍数较低,开合模过程中存在冲击的问题,开展了机铰系统的优化设计研究。首先建立了合模机构的力学模型,通过有限元法计算了结构应力、变形量和刚度,并校核了强度。将肘杆刚度作为参数,建立了机铰系统刚-柔结合多体动力学模型,仿真与测试结果相符合,验证了建模方法的准确性。最后在多体动力学模型基础上,以肘杆铰接点坐标作为设计变量,建立了优化设计模型。将优化设计与原始设计进行对比,扩力倍数由21.45提升到24.57,行程比由1.03提升到1.08,合模过程的冲击力显著减小。

压铸机是有色金属及其合金压力铸造的基础设备,结构复杂。合模机构由模板和机铰等组成,是压铸机的关键机构。每个压铸件生产循环周期都伴随着合模机构的一次开合动作,合模机构的锁模和开模主要通过油缸推动机铰系统,结构示意见图1。机铰系统将油缸的推力快速扩大,推动模板动作。机铰系统是典型的多连杆机构,肘杆(连杆)尺寸设计不合理导致合模机构的扩力倍数不足,合模过程冲击大,模具寿命低,开模和锁模时间长,压铸效率低。要实现大的锁模力需要依靠增加油缸推力,工作能耗高。

目前,压铸机机铰的设计主要基于理论计算方法,由于不能够考虑到合模机构中其他复杂结构零件,以及机铰系统自身各个零部件的变形量影响,因而,计算结果误差大,导致设计的机铰结构不合理。反复设计、制造导致研发周期长、费用高。数字化建模、有限元法和运动学仿真技术的协同应用为压铸机机铰的设计提供全新的解决方案,通过数值模拟技术,不仅可以实现性能的定量设计,而且可以实现最优化设计,显著缩短机铰系统的研发周期,节约成本。
查看详情
针对锁模力为25 000 kN压铸机扩力倍数较低,开合模过程中存在冲击的问题,开展了机铰系统的优化设计研究。首先建立了合模机构的力学模型,通过有限元法计算了结构应力、变形量和刚度,并校核了强度。将肘杆刚度作为参数,建立了机铰系统刚-柔结合多体动力学模型,仿真与测试结果相符合,验证了建模方法的准确性。最后在多体动力学模型基础上,以肘杆铰接点坐标作为设计变量,建立了优化设计模型。将优化设计与原始设计进行对比,扩力倍数由21.45提升到24.57,行程比由1.03提升到1.08,合模过程的冲击力显著减小。

压铸机是有色金属及其合金压力铸造的基础设备,结构复杂。合模机构由模板和机铰等组成,是压铸机的关键机构。每个压铸件生产循环周期都伴随着合模机构的一次开合动作,合模机构的锁模和开模主要通过油缸推动机铰系统,结构示意见图1。机铰系统将油缸的推力快速扩大,推动模板动作。机铰系统是典型的多连杆机构,肘杆(连杆)尺寸设计不合理导致合模机构的扩力倍数不足,合模过程冲击大,模具寿命低,开模和锁模时间长,压铸效率低。要实现大的锁模力需要依靠增加油缸推力,工作能耗高。

目前,压铸机机铰的设计主要基于理论计算方法,由于不能够考虑到合模机构中其他复杂结构零件,以及机铰系统自身各个零部件的变形量影响,因而,计算结果误差大,导致设计的机铰结构不合理。反复设计、制造导致研发周期长、费用高。数字化建模、有限元法和运动学仿真技术的协同应用为压铸机机铰的设计提供全新的解决方案,通过数值模拟技术,不仅可以实现性能的定量设计,而且可以实现最优化设计,显著缩短机铰系统的研发周期,节约成本。
挤压铸件内部组织及溶质分布的研究
挤压铸件内部组织及溶质分布的研究
研究了挤压铸造零件不同部位的微观组织和Cu含量并讨论了壁厚对试样微观组织和Cu含量的影响,利用光学显微镜和直读光谱仪,观察和测量了零件各部位微观组织变化和溶质含量变化。结果表明,随着试样距内浇口道距离(158、201、245、284 mm)依次增大,试样的晶粒变得粗大,晶粒尺寸由18.35μm变为39.85μm。Cu含量由表面的1.73%~1.77%增加到心部的1.81%~1.87%,硬度(HV)由表面的102.5~106减小到心部的96~99;壁厚越大(6、17、27.5 mm),心部的硬度值越小,最小值为96HV,晶粒变得粗大,晶粒尺寸为45.22 μm,心部铜含量增加;从试样表面至心部,铜含量呈增加趋势,由表面的1.73%~1.75变为心部的1.83%~1.85%,硬度呈减小趋势。
查看详情
研究了挤压铸造零件不同部位的微观组织和Cu含量并讨论了壁厚对试样微观组织和Cu含量的影响,利用光学显微镜和直读光谱仪,观察和测量了零件各部位微观组织变化和溶质含量变化。结果表明,随着试样距内浇口道距离(158、201、245、284 mm)依次增大,试样的晶粒变得粗大,晶粒尺寸由18.35μm变为39.85μm。Cu含量由表面的1.73%~1.77%增加到心部的1.81%~1.87%,硬度(HV)由表面的102.5~106减小到心部的96~99;壁厚越大(6、17、27.5 mm),心部的硬度值越小,最小值为96HV,晶粒变得粗大,晶粒尺寸为45.22 μm,心部铜含量增加;从试样表面至心部,铜含量呈增加趋势,由表面的1.73%~1.75变为心部的1.83%~1.85%,硬度呈减小趋势。
上一页
1
2
...
15
这是描述信息

总部

浙江省宁波市鄞州区天童南路666号中基大厦904室

厂部

 浙江省宁波市奉化区岳林街道 宝峰路45号

铝锻造分部

浙江省临海市邵家渡街道

Copyright 2019 Inc. All rights reserved. 浙ICP备17013668号